

VIDYA BHAWAN, BALIKA VIDYAPITH

Shakti Utthan Ashram, Lakhisarai-811311(Bihar)

(Affiliated to CBSE up to +2 Level)

CLASS: X

SUB.: MATHMETICS

Basic Concepts

- Zeroes of a polynomial. k is said to be zero of a polynomial p(x) if p(k) = 0
- Graph of polynomial.
 - (i) Graph of a linear polynomial ax + b is a straight line.

(ii) Graph of a quadratic polynomial $p(x) = ax^2 + bx + c$ is a parabola open upwards like U, if a > 0.

(iii) Graph of a quadratic polynomial $p(x) = ax^2 + bx + c$ is a parabola open downwards like \bigcap , if a > 0.

(iv) In general a polynomial p(x) of degree n crosses the x-axis at atmost n points.

- Relationship between the zeroes and the coefficients of a Polynomial.
 - (i) If α , β are zeroes / roots of $p(x) = ax^2 + bx + c$, then

Sum of roots $\alpha + \beta = \frac{-b}{a} \Rightarrow \alpha + \beta = \frac{-(\text{coefficient of } x)}{\text{coefficient of } x^2}$

Product of roots = $\alpha\beta = \frac{c}{a} \Rightarrow \alpha\beta = \frac{constant term}{coefficient of x^2}$

• If α , β are roots of a quadratic polynomial p(x), then $p(x) = x^2 - (\alpha + \beta) x + \alpha\beta$ $\Rightarrow p(x) = x^2 - (sum of roots) x + product of roots$

Example: Find the zeroes of the quadratic polynomial and verify the relationship between the zeroes and coefficient of polynomial $p(x) = x^2 + 7x + 12$. Sol. $p(x) = x^2 + 7x + 12$

$$x) = x^{-} + 7x + 12$$

$$\Rightarrow p(x) = (x + 3)(x + 4)$$

$$\therefore p(x) = 0 \text{ if } x + 3 = 0 \text{ or } x + 4 = 0$$

$$\Rightarrow x = -3 \text{ or } x = -4$$

$$\therefore -3 \text{ and } -4 \text{ are zeros of the } p(x).$$

Now,

Sum of the zeroes = $-3 + (-4) = -7 = \frac{-7}{1} = \frac{-(\text{coefficient of } x)}{\text{coefficient of } x^2}$ Product of the zeroes = $(-3) \times (-4) = 12 = \frac{12}{1} = \frac{\text{constant term}}{\text{coefficient of } x^2}$

2. Find the zeroes of $4x^2 - 7$ and verify the relationship between the zeroes and its coefficients

Sol. Let
$$p(x) = 4x^2 - 7$$

Here coefficient of $x^2 = 4$,
Coefficient of $x = 0$ and constant term $= -7$.
Now $p(x) = 4x^2 - 7 = (2x - \sqrt{7})(2x + \sqrt{7})$
 $\therefore p(x) = 0$, if $2x - \sqrt{7} = 0$ or $2x + \sqrt{7} = 0$
 $\Rightarrow x = \frac{\sqrt{7}}{2}$ or $x = \frac{-\sqrt{7}}{2}$
 $\therefore \frac{\sqrt{7}}{2}$ and $\frac{-\sqrt{7}}{2}$ are zeroes of $p(x)$.
Now,
Sum of zeroes $= \frac{\sqrt{7}}{2} + \left(\frac{-\sqrt{7}}{2}\right) = 0 = \frac{0}{4} = \frac{-(\text{coefficient of } x)}{\text{coefficient of } x^2}$

Product of zeroes = $\frac{1}{2} \times \frac{1}{2} = \frac{1}{4} = \frac{1}{\text{coefficient of } x^2}$

3. Find a quadratic polynomial whose zeroes are $5 + \sqrt{2}$ and $5 - \sqrt{2}$. Sol. Let α , β are zeroes of quadratic polynomial p(x).

:..
$$p(x) = x2 - (\alpha + \beta) x + \alpha\beta$$

Here, $\alpha = 5 + \sqrt{2}$, $\beta = 5 - \sqrt{2}$
:.. $\alpha + \beta = 5 + \sqrt{2} + 5 - \sqrt{2} = 10$
and $\alpha\beta = (5 + \sqrt{2})(5 - \sqrt{2})$
 $= 25 - 4 = 21$
:.. $p(x) = x^2 - 10x + 21$